
Journal of Applied Mathematics & Bioinformatics, vol.3, no.4, 2013, 91-105
ISSN: 1792-6602 (print), 1792-6939 (online)
Scienpress Ltd, 2013

Hash addressing of the quasi-permanent key arrays

in multilevel memory

Nikolaos G. Bardis1, Nikolaos Doukas 1 and Oleksandr P. Markovskyi2

Abstract

A hash search organization is proposed that uses quasi – permanent keys in

conjunction with perfect hash addressing and probing. The particular characteristic

of the proposed method is the fact that the model is oriented to a multilevel

organization of the memory of modern computational systems. A mathematical

model of the hash search in multilevel memory has been developed that allows the

optimization of the hash memory parameters during the design.

Keywords: Hash Memories, Search, Addressing, Multilevel Memory

1 Informatics and Computer Engineering Lab, Faculty of Mathematics and Engineering
 Science, Department of Military Sciences, Univ. Military Sciences - Hellenic Army
 Academy, Vari - 16673, Greece. E-mails: nikolaos@doukas.net.gr , bardis@ieee.org
2 Department of Computer Engineering, National Technical University of Ukraine,
 (Polytechnic Inst. of Kiev), Peremohy pr., Kiev 252056, KPI 2003, Ukraine.
 E-mail: markovskyy@i.ua

Article Info: Received : August 1, 2013. Revised : October 20, 2013.
 Published online : December 10, 2013.

92 Hash addressing of the quasi-permanent key arrays in multilevel memory

1 Introduction

The operation of a key based search is considered as a fundamental one in

information technologies. In a significant number of widely used practical

applications, the relative computational load of search operations may be as large

as 80% of the total [1]. The progressive development of information systems and

of information integration determines a dynamic increase of the volume of the key

indices upon which searches are performed [2].

The constant expansion of the scope of use for information systems has as a

consequence imposed stricter requirements for the efficiency of search procedure

results. More specifically, a large proportion of pattern recognition systems, in

which key search is actively used, operate in real time conditions. Based on these

facts, the development of key based search technologies is an important practical

target, applicable to a wide range of information processing systems.

2 Analysis of Existing Search Technologies

An important factor determining the efficiency of key based search is the

incorporation of the multilevel memory organization of modern computational

systems into search algorithms. In current conditions, where the volume of indices

is constantly increasing and the efficiency requirements upon the search are

becoming ever more demanding, the applicability of binary trees and B trees is

significantly reduced, given the dependence of the search time on the volume of

the key array. Apart from that, such search procedures are anyway less effective in

the case of multilevel memory organization.

The fastest current key – based search method available is the associative

memory that may be implemented in either hardware (content addressable

memory) or in software (hash memory). The basic advantage of associative search

is considered to be the fact that the search time is independent of the volume of the

N.G. Bardis, N. Doukas and O.P. Markovskyi 93

key array. The main disadvantage consist is that hash searching technology

requires the excess memory. But in modern condition of reducing memory cost

this disadvantage loosing importance.

The second impotent disadvantage of hash searching consists of existing of

the collisions. The effectiveness resolution of this problem can be finding by using

of different hash techniques for different key arrays.

There exist practical applications of key – based search, where the key array

is considered permanent or quasi-permanent (the computational load required for

the key based search procedures exceeds by several orders of magnitude the

computational load of the procedures for changing the search key array). Such

applications include principally pattern recognition systems, electronic translation

systems, user identification and authentication in systems supporting remote

access and a large proportion of database applications.

During the hash search in permanent key arrays, it is possible to determine a

one-way hash transformation that eliminates collisions. In bibliography, this class

of methods is referred to as perfect hash addressing [1]. The fundamental

advantage of perfect hash addressing is the absence of collisions, i.e. the key

search time is determined by the time required for a single memory access. This

permits the search schemes to attain maximum search speed, independent of the

volume of the search key array [2].

The exercise of determining a hash transformation for perfect hash addressing

exhibits exponential complexity. For the completion of this exercise, a series of

methods have been proposed in bibliography [1], [2], [3], [5], [6]. The

disadvantages of these methods are that they do not take into account the

multilevel organization of memories and that they do not allow changing of the

keys during operation. The purpose of this research is the modification of the

organization of hash searches so that it becomes oriented to the quasi-permanent

nature of the key array. Additionally, developments are sought in the

94 Hash addressing of the quasi-permanent key arrays in multilevel memory

mathematical model of such hash searches for the optimization of its

characteristics.

3 Analysis of the Hash Search Model for Quasi-Permanent

 Indices

The purpose of the hash search model that will be presented is to

incorporate the analytic form of the dependencies between the characteristics of

the hash-memory that determine its organization into the model and enable it to

solve problems of optimization of the architecture of hash memory during the

design phase. By hash transformation keys are distributes of memory pages as it

shown on Figure 1.

w

Key array

Hash transformation

s pages

Figure 1: Structure of distribution keys of memory pages

N.G. Bardis, N. Doukas and O.P. Markovskyi 95

At the basis of the model that will be presented, lies the concept of the

determination of a hash transformation)(XH the ensures the mapping of a given

set Ω from m keys in s pages of hash memory in such a way that the entire set

of keys that are classified in each of the pages do not exceed the value () w⋅+ δα ,

where α is the load factor of the hash memory, δ the allowed variability of the

load of a hash memory page load and 1≤+ δα . The load factor α of the hash

memory is defined by the relation between the total number m stored records to

the maximum feasible record count wsM ⋅= that is determined by the size of the

memory:

 ws
m

M
m

⋅
==α (1)

As a record, one may consider the information taken as the key associated

to a particular data item. The reference address of the position where the data is

stored may be found in the record instead of the data. The determination of the

hash transformation)(XH that satisfies the above condition may be done by trial

and error. As the test mechanism for the hash transformations, it is proposed that

the prototype, block – based cryptographic algorithms (DES or Rijndael) be used,

that incorporate the one-way cryptographic encoding using the key K , of the data

D in the codeword)(: DHCC K= .

The key for the search data X in this case is used as input data to the

cipher block whence the key K of the cipher block assumes the role of

synchronization code and actually appears together with the number of the hash

transformation. The resulting code C of the cipher block is divided in two parts:

an h-bit packet that serves as a hash address)(XAK of the page and the remaining

bits that become the hash Sing)(XSk of the key X of the search [7].

Consequently the choice of the Hash transformation)(XH K is attained via the

procedure of changing the key K of the cipher block.

96 Hash addressing of the quasi-permanent key arrays in multilevel memory

Considering that a page may contain w keys, hash address)(XAK , the

page has sh 2log= – bit codes. The hash function distributes the m keys in s

groups that contain snnn ..., 21
 keys, since m

s

j
j =∑

=1
η . Given that the hash

transformation arranged the keys in the hash memory page, it is mandatory that

the entire set of hash addresses of each page does not exceed the maximum

allowed number of ωδα ⋅+=)(u records per page: { } u≤∈∀ ϕησϕ :,...,1 . If this

is maintained then in each page of the hash memory, there is enough memory

space to store)1(δαω −−⋅ records.

Taking into account the fact that the hash transformation)(XH K arranges

the hash address uniformly, then in each page there exist on average
s
m hash

addresses. As a theoretical model for the distribution of the Hash addresses, the

most accurate model is the Bernoulli probability distribution. According to this

model, the distribution of the Hash addresses of the m keys within the limits of a

given page may be considered as m experiences. The event of the allocation of a

given address to the address space of a given page is then associated with a

probability of
s
1 . Hence, according to the properties of the model, one may

calculate that the mathematical expectation of the hash addresses that correspond

to a given page is equal to
s
m with variance)

s
(

s
mc 111

−⋅⋅= . Hence, according to

the de Moivre – Laplace theorem, all the hash addresses that correspond to the

range of a given page are subject to a Gaussian distribution with mean
s
m and

variance)11(1
ss

m −⋅⋅ .

The probability OSP for a page overflow, i.e. the probability of the number

of hash addresses that correspond to a given (constant) page of the hash memory

N.G. Bardis, N. Doukas and O.P. Markovskyi 97

exceeds u , for a Normal distribution and taking into account (1), is defined by the

following expression:

 / /0.5 () 0.5 () 0.5 ()
/ /os

u m s w (α+δ) m s wP = Φ = Φ = Φ δ
αm s m s

− ⋅ −
− − − ⋅ (2)

For a permanent key array, i.e. for the case where a page does not need to

have excess free memory, for)1(δα −−⋅w records, where αδ −=1 , the

probability that the number of hash addresses that correspond to a given page does

not exceed w , is defined by the following expression:

10.5 ()osw
αP = Φ w
α

−
− ⋅ (3)

From expression (3) it follows that the probability of overflow of the page

at the given order depends on the value of the coefficient δ of the redundant free

memory of the page, on the coefficient α of completion as well as on the volume

of the page and the memory required for storing these records.

In order to eliminate the possibility of page overflow of all s pages during

the population of the constant set Ω of m keys, it is necessary to choose

corresponding hash transformations. The probability OP of a certain trial of the

hash transformation achieves elimination of the possibility of overflow for all the

pages of the hash memory, is calculated via the calculation of the probability of

each page not overflowing:

S

S
OS

wPP 







⋅Φ+=−=)(5.0)1(0 α

δ (4)

The mean g of number of trials that are necessary before choosing the

hash transformation, so as to eliminate the possibility of overflow of the pages of

the hash memory is calculated by the following expression:

01

1
00

1)1(
P

PPjg
j

j =−⋅⋅= ∑
∞

=

−
. (5)

98 Hash addressing of the quasi-permanent key arrays in multilevel memory

The experiments that were carried out based on the above statistical

modeling have shown the sufficiency of the proposed mathematical model of the

hash addresses in quasi-permanent key indices in hash memories that are divided

in pages. The proposed model may be used for the optimization of the parameters

of the hash memory.

From expression (5) it follows that for a given number Zg of trials for the

choice of a hash transformation, that guarantees the allocation of records in the

pages with completion of less than () %100⋅+ δα , the values δα , and w must

satisfy the condition:

 1 1(0.5)
Z

w Sδ =Φ
α q

−⋅ − (6)

If it is necessary to ensure the fast selection of a hash transformation, then

this may be obtained using the relation 1≈Π⋅ οσσ . In this case for large values

of s , the following approximation holds:

 ∑
=

−=−=
S

i

S
OSPP

1
0 1)1((7)

The analysis of the mathematical model demonstrates that, the compromise

involved in the hash search, exists in the selection of the number of the pages

among which exchanges take place between the main and the cache memory. The

analysis leads to the conclusion that the search speed essentially depends on the

time for transferring the arranged hash page addresses from the main hash

memory to the cache memory, which in turn depends on the size of the pages.

Consequently, from the point of view of attaining high speed hash searches, the

page size needs to be reduced. At the same time, reducing the time required for

selecting the hash transformation requires according to (5) an increase of the page

size. A resolution of the above compromise may be found by the defined

frequency of the key array reconstruction; the more frequently new keys are

assigned, the smaller the required time for selecting the hash transformation and

N.G. Bardis, N. Doukas and O.P. Markovskyi 99

the larger the page size δ may be. The derived by experimental way plots of

number trials for hash transformation selection and time searching dependences on

page size for number keys 4000, 75.0=α and 15.0=δ is presented on Figure 2

below.

Maximum
number w of
keys in page

Number of probing for
hash transformation

selection

Number of access in
main memory with
hash searching

1

5

15

10

20

25

30

35

256128 512

256

512

128

Maximum
number w of
keys in page

Number of probing for
hash transformation

selection

Number of access in
main memory with
hash searching

1

5

15

10

20

25

30

35

256128 512

256

512

128

Figure 2: Graph of the dependence of the number of probing for the selection of

Hash transformation and the time of hashing search in the dependence on the size

of page for 4000 keys, 75.0=α and 15.0=δ

The resolution of these contradicting requirements may be attained either by

increasing the size of the pages or by reducing the proportion of the hash memory

that is occupied.

100 Hash addressing of the quasi-permanent key arrays in multilevel memory

4 Organization of Hash Searches

In this section, the principles of the organization of a hash search are

outlined. The basic key array exists in the form of Hash Signs and associates the

information stored in main memory with the hash addresses. The selection of the

hash transformation for nearly constant memories guarantees the assignment of

records in the main memory, in accordance with the hash addresses. Structure of

proposed hash searching organization on two-level memory is shown in Figure 3.

The cache memory is set as the active page of the main memory.

Additionally, an area is assigned for new records for which there is insufficient

space in the main memory pages corresponding to their keys. Apart from that, the

storing of the most frequently used codes of the hash transformation may also be

organized in the cache memory. The hash transformation)(XH K is determined

by selection for the set Ω of the m keys, either before system boot or at a

specially determined time during the system setup. The transformation distributes

the user records in the s pages of the hash memory so that each page has enough

space for storing more than)1(δα −−⋅w records.

The transformation)(XH K is determined by selection in the form of the

code K of the key and the hash search to be used is hence defined. During this

process the set Ω of the keys is divided into s subsets, each one containing less

than)(δα +⋅w elements. This means that each page stores less than)(δα +⋅w

records. Beside this, the cipher block forms w2log bit hash addresses)(XU K ,

that define all the records of the corresponding keys X within the pages. The

Hash Sign code)(XS K together with the Hash address)(XAK of the page and

the hash address)(XU K within the page, using the one way transformation that

implements the cipher block, uniquely defines the key X . Within the page,

records are inserted using their own hash address)(XU K , Possible conflicts are

resolved using known technologies [4], more frequently by trials.

N.G. Bardis, N. Doukas and O.P. Markovskyi 101

 Protected memory

Secret set up key of
the hash

transformation

Cache memory

Backup
pages

Working
page

Main memory

page

page

page

Permutation of the Hash
transformation on the
basis of cipher block

key of
search

Hash – address
 Address Address
of page in page

Selection of page from
main memory

Copying the selected
page into the cache

memory

Hash search
in the page

Hash
Sign

comparison

Hash search in
the region of the
overcrowding

comparison

 Figure 3: Organization of hash searching in quasi-permanent key arrays

 for two-level memory

102 Hash addressing of the quasi-permanent key arrays in multilevel memory

Each one of the records includes the hash Sign)(XS K of the keys

associated with the data in each case. For the reduction of the size (length) of the

records and the subsequent increase of w the reference code of the address may be

stored in the place of all codes apart from)(XS K .

For the deletion of a record X , the record is removed from the page by

initialization of the memory it occupies and taking into account the displacement

of the chain of conflicts to which it formed part.

For the introduction of a new record X , a relocation of the addresses

)(XAK of the pages from main memory to cache memory is generated. If the

page is not full, then an attempt is made for the new record X to be inserted at the

address)(XU K . If the corresponding page is occupied, then step by step trials are

made until a free area is located. If the page that is arranged as)(XAK appears a

completely occupied, then the record X , that is associated with a subset of the

bits of the hash address)(XAK fits in the special sector of the cache memory that

is essentially an overflow area. If the corresponding location in this page is also

occupied, then an attempt to resolve the conflict by a step by step trial search is

made. In the case where the record is inserted in the overflow area, this does not

contain the Hash Sign X , but the entire code. If the predetermined overflow area

appears to be completely occupied, then a refresh cycle needs to be initiated.

The process of inserting new records in the hash memory described above

may be implemented in two ways, each one giving priority to inserting the record

in one of the two available areas. The insertion of a new record between cycles of

refreshing the system may occur:

• In the overflow area, which offers a small capacity and is located in the

cache memory

• In the main hash memory, where it occupies part of an unoccupied zone

in the page that is associated with the hash address key of the new

record.

N.G. Bardis, N. Doukas and O.P. Markovskyi 103

From a theoretical point of view, two cases of record organization may be

distinguished:

1. Initially the record is inserted in the free space of the associated page of the

main memory and in the absence of that space then it is inserted in the

overflow area of the cache memory.

2. The record is initially inserted in the overflow area of the cache memory

and when this becomes full, in the free space of the associated page of the

main hash memory.

It is apparent that the first case will offer a large number of new record entries,

which may be distributed in the hash memory before there is a need to refresh the

contents. The advantage of the second case is that the use of the overflow area is

more efficient and this implies a significantly higher speed of the hash search.

By using the n -bits key X as a key for code K , the cipher block calculates the

h -bit hash address)(XAK of the page, the hash address)(XU K internal to the

page and the Hash Sign code)(XS K . The hash address)(XQK for the record X

within the overflow area is also simultaneously formulated. The address)(XQK

is a subset of the bits)(XAK ,)(XU K and)(XS K . The Hash search of the

overflow area is performed for the address)(XQK . If the search is successful,

then the record with code X is retrieved from the overflow area and access to the

information associated to X is accessed.

Together with the search in the overflow area of the cache memory, the

page that is associated with the code)(XAK is recovered from the main memory

to cache memory. Following that, using the address)(XU K the corresponding

record is read. The hash sign of the record is calculated and compared with the

hash sign)(XS K . In the event where these two coincide, the passwords are

compared and the process of granting access rights is completed. In the event

where the codes of the hash signs do not coincide, step by step trials are performed

with the remaining record until either a matching hash sign or an empty record is

104 Hash addressing of the quasi-permanent key arrays in multilevel memory

found. The empty record case implies that a record with code X is not stored in

the memory.

The time 1t of the search with the distinguishing key X is defined as the sum of:

Ht - the time for calculating the hash transformation using the cipher

block.

st - the time for swapping the page with address AK(X) from main

memory to cache memory

Xt - the time for a hash search in the selected page of the cache

memory

XSH tttt ++=1

Considering that XHS ttt >>>> the search time is principally defined by the time

consumed in testing the page from main memory to cache memory.

5 Results

The results obtained from conducting this research, that focus in increasing

the efficiency of hash address searching in nearly constant key indices, may be

summarized as follows:

A hash search model was developed that corresponds to the nearly

constant key array case. The model takes into account the multilevel memory

organization of modern computational systems.

The basis of the model that was developed, proposed the organization of

hash searches in nearly constant key indices. It was shown that the search time is

defined by access to no more than low level memory pages.

The proposed hash memory organization may be efficiently used for

increasing the throughput of databases, of linguistic processors as well as for

accelerating authentication of users in computer networks.

N.G. Bardis, N. Doukas and O.P. Markovskyi 105

References

[1] Berman F., Bock M.E., Dittert E., O`Donnel M.J., Plank D., Collections of

function of perfect hashing, SIAM Journal Computers, 15(2), (1986), 604-

618.

[2] Czech Z.J., Havas G., Majevski B.S., An Optimal algorithm for generating

minimal perfect hash functions, Information Processing Letters, 43(5),

(1997), 257-264.

[3] Jagannathan R., Optimal partial-match hashing design, ORSA Journal of

Computing, 3(2) (1991), 86-91.

[4] Ningping Sun, Ryozo Nakamura, Nonbing Zhu, Akiro Tada, Wenling Sun, An

analysis of average search cost of external hashing with separate chain,

Processing of 7-th WSEAS International Conference on Circuits, Systems,

Communications and Computers (CSCC-2003), (2003), 315-324.

[5] Ramakrishna M.V., Bannai Y., Direct perfect hashing function of external

files, Journal of Database Administration, 2(1), (1991), 19-28.

[6] Polymenopoulos A., Bardis E.G., Bardis N.G., Markovskaja N.A., Perfect

Hashing Using Linear Boolean Functions, WSEAS Press - Problem in

Applied Mathematics and Computational Intelligence, ISBN: 960-8052-30-0,

(2001), 5-11.

[7] Bardis E.G., Bardis N.G., Markovskyy A.P., Spyropoulos A.K., High Storage

Utilization of Hash Memory by Reducing of Information Redundancy for

Hashing, Submitting in the special issue of IMACS/IEEE CSCC'99

International MultiConference, Software and Hardware Engineering for the

21th Century, ISBN: 960-8052-06-8, (1999), 272-276.

